蔵書情報
この資料の蔵書に関する統計情報です。現在の所蔵数 在庫数 予約数などを確認できます。
この資料に対する操作
電子書籍を読むを押すと 電子図書館に移動しこの資料の電子書籍を読むことができます。
資料情報
各蔵書資料に関する詳細情報です。
No. |
所蔵館 |
資料番号 |
請求記号 |
配架場所 |
所蔵棚番号 |
資料種別 |
帯出区分 |
状態 |
付録 |
貸出
|
1 |
中央図書館 | 0110362209 | 518.1/ゲ/ | 書庫3 | | 一般図書 | 一般貸出 | 在庫 | |
○ |
関連資料
この資料に関連する資料を 同じ著者 出版年 分類 件名 受賞などの切り口でご紹介します。
書誌詳細
この資料の書誌詳細情報です。
タイトルコード |
1001000542498 |
書誌種別 |
図書 |
書名 |
現場必携簡易水質試験法 |
書名ヨミ |
ゲンバ ヒッケイ カンイ スイシツ シケンホウ |
著者名 |
萩原 耕一/[ほか]共著
|
著者名ヨミ |
ハギワラ コウイチ |
版表示 |
第2版 |
出版者 |
共立出版
|
出版年月 |
1986.9 |
ページ数 |
135p |
大きさ |
19cm |
分類記号 |
518.12
|
分類記号 |
518.12
|
ISBN |
4-320-04204-2 |
件名 |
水質検査 |
言語区分 |
日本語 |
(他の紹介)内容紹介 |
ビジネス上の意思決定につながる機械学習の予測には、解釈・説明が求められます。そこで、そうした解釈・説明を行うための手法を紹介します。実際にLIME、SHAP、Skater、ELI5といった種々のPythonライブラリを使い、モデルがなぜそのように予測するのかを探っていきます。予測モデルとして、線形・非線形モデルのほか、アンサンブルモデル、時系列モデル、自然言語処理、ディープラーニング、コンピュータビジョンを取り上げます。本書は解釈・説明のための方法を包括的に取り上げており、機械学習を実際の現場で活用する方にぜひ手に取っていただきたい一冊です。 |
(他の紹介)目次 |
第1章 モデルの説明可能性と解釈可能性 第2章 AIの倫理、偏見、信頼性 第3章 線形モデルの説明可能性 第4章 非線形モデルの説明可能性 第5章 アンサンブルモデルの説明可能性 第6章 時系列モデルの説明可能性 第7章 自然言語処理の説明可能性 第8章 What‐Ifシナリオを使ったモデルの公平性 第9章 ディープラーニングモデルの説明可能性 第10章 XAIモデルの反実仮想説明 第11章 機械学習での対比的説明 第12章 予測不変性の特定によるモデル不可知の説明 第13章 ルールベースのエキスパートシステムでのモデルの説明可能性 第14章 コンピュータビジョンでのモデルの説明可能性 |
内容細目表
前のページへ